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Abstract

This paper treats a proposed theory and application to
detect and outline oil fields, and divide them into isolated
traps marked by the low overburden pressure and fluid-
trapping properties based on a correlation between the
structural pattern and mapped stress field.

Unlike the traditional methods of hydrodynamic modeling,
the new method is based on 3D multicomponent seismic
exploration data (Vp,Vs,ρ).

We also focus in the so much attention that has been
recently given to stress predicition, shear waves, porosity,
specific surface, pressure, and 3D hydrodynamic modeling
of buried oil and gas traps.

A different systematic approach implies the use of seismic
data (Vp and Vs velocities and density ρ) for stress modeling
of reservoirs, in order to detect regions of low overburden
pressure P(x,y,z), and vertical inclination of fractures
(faults) ϕ(x,y,z) caused by the nonhydrostatic behavior of
stress.

Introduction

Sibiryakov (2002) presented theory and appplications on
pore space and integral geometry. And as a rule, for small
porosity there is a large specific surface area that creates
anomalous high γ = vS

vP
ratio, what can produce a negative

Poisson coefficient, σ = 1−2γ2

2−2γ2 .

The state of elastic layered media is described in the
general case by six (three normal and three tangential)
stress tensor components. Complex stress behavior of
buried traps is modeled on the basis of P and S layer
velocities, and of the bulk density of reservoir and cap
rocks. Overburden pressure and tangential stress intensity
(the measure of nonhydrostatic behavior of stress) are
other key parameters, the so-called scalar invariants of
stress tensor. (Sibiryakov, 2004).

Stress is nonhydrostatic even in horizontal layered media
subject to only vertical gravity compactation without
horizontal displacement. Vertical stress is defined as equal
to the weight of the overburden in the form: σzz = Pz = P0.
The correspondent horizontal stress is sufficiently lower,
and given by: σxx = Px = P0(1−2γ2), (σxx = σyy in this case),
than Pz, where γ = VS

VP
. (Sibiryakov et al., 2004).

Pressure is always a scalar quantity, and the simplest case

for overburden pressure is given by P =
σxx+σyy+σzz

3 = P0(1−
4
3 γ2), which is sufficiently less than the overlying weight Pz.
(Sibiryakov et al., 2004).

The overburden pressure breaks at layer boundaries if the
velocity ratio γ has a discontinuity. In the simplest case of
layered media, the jump of overburden pressure at layer
boundaries is ∆P = 4

3 P0(γ
2
1 − γ2

2 ) (Sibiryakov et al., 2004).
This jumpwise characteristics (positive and negative) can
appear strange to geologists, but it is a fact related to the
nonelementary behavior of stress in solids.

The intensity of tangential stress is a measure of the
mechanical instability, and it is the parameter responsible
for the failure of the solid rock skeleton and fracturing.
In simple layered media, the tangential stress, scalar
invariant, is given by PT = J = σzz−σxx

2 , it also depends on
the velocity γ ratio, and it is shown to be given by: J = γ2Pz
(Sibiryakov et al., 2004).

Methodology

Example

Sibiryakov and Zaikin (1994) have applied this method for
2D applications to stress modeling in seismic sections in
East and West Siberia. But, the direct extrapolation of the
method to 3D problems complicates the computation.

Referring to Figure 1, the overburden pressure and
intensity of tangential stress estimated on the basis of the
γ velocity ratio were assumed constant over the reservoir,
and the flow lines are thus temptative. Almost all lines
converge toward the top of the structure. The points of
local discharge, to the right and left of the main borehole
complex, are prominent even in this generalized model.

Figure 2 shows the map of tangential stress intensity for
the same surface of Figure 1, where the region of lowest
pressure almost coincides with faults within the region
of minimum tangential stress, which indicates a certain
stability of the structure as a whole. High tangential
stresses cluster near a fault, which appears as a rather
realistic result.

Figure 3 shows calculated fracture inclinations, φ(x,y,z),
around the structure. The fracture planes are inclined
about 45 degrees with respect to the vertical, which may
correspond to either randomly oriented fractures or to
anisotropic medium with rhombic symmetry. However,
fractures change their inclinations near faults to roughly
vertical inclinations, thus producing another preferred
inclination.

The vertical inclination of fractures, called φ(x,y,z), are
obtained from the rotation of the stress system to give the
stress diagonal matrix, where the diagonal elements are
the main stresses, and where σxx ≈ σyy (Novacky, 1970).
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Figure 1: Tectonic stress of Jurassic reservoir where the
contour lines are overburden pressure P=P0(1− 4

3 γ2) (dark
blue lines) drawn in an arbitrary scale, and superposed
to the color scale. Orthogonal trajectories are probable
fluid flow lines (red arrows). The pressure scale is in color
and placed on the left side, and shows variations between
26-28 Mega-Pascal (MPa), 1 MPa=10 Atmospheres. The
center of the map is dominated by a low pressure zone.
The dots with numbers are productive boreholes. Heavy
red lines are geological faults. Isolated circular enclaves
correspond to local hydrodynamic systems.

Figure 2: Intensity of tangent stress, J = γ2P0, as a measure
of nonhydrostatic pattern (dark blue lines), where the high
values are located around small stress zones. The lines
are drawn in an arbitrary scale, and superposed to the
color scale. The color pressure scale is on the left side
and shows values between 15.3-16.0 in MPa. The dots
with numbers are productive wells. Heavy red lines are
geological faults.

Physics, the Stress Tensor and Its Invariants

The system of equations of equilibrium used to estimate
stresses is given below, where two differential equations

Figure 3: Calculated fracture inclinations φ(x,y,z) in
producing bed. The color scale of the left shows a variation
between 46 and 64 degrees with respect to the vertical (to
the left and/or to the right). The blue areas shows roughly
vertical fractures, and the brown areas show more Normal
fractures with a more chaotic distribution. In the center of
the map, we can describe more randomly inclined fractures
(darker areas). The dots with numbers are productive
wells. Heavy red lines are geological faults.

are homogeneous and one nonhomogeneous (Sibiryakov
and Prilous, 2007):

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂ z
= 0, (1)

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂ z
= 0, (2)

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂ z
= ρg. (3)

The first two equations (1 and 2) correspond to full
cancellation of horizontal 3D forces produced by inner
stresses, and the last one means that vertical 3D forces
are simply equal to the normalized gravity force.

The fundamental solution of the system (1-2-3) is given by
Novacky (1970) in the form:

uk(x) =
g

V 2
S

∫
V

Γkz(x,y)dVy. (4)

The additional displacement uk(x) due to structure
deformation is the integral over the structure volume V
of the fundamental solution, Γkz(x,y), of the equilibrium
equation, it depends on the square S-wave velocity (4), and
z in Γkz is related to the vertical component as the gravity g.
The integration covers all the volume represented by the y
coordinate.

Pressure in rock skeleton and fluid

For a fluid-filled reservoir, consider un as the normal
displacement of a skeleton grain. Applying the Gauss
theorem, we obtain:∫∫

S
unds =

∫∫∫
V

div−→u dV = fV
P0

ρ0c2 , (5)

VI Brazilian Symposium on geophysics



VIEIRA, LEITE & SIBIRYAKOV 3

where S is the grain surface, V the total volume, fV is the
pore space volume, P0 is the fluid pressure, and ρ0c2 is the
fluid inverse compressibility (noncompressibility). Also, we
can write the approximation:∫∫

S
unds =< un > S, (6)

where < un > is the mean normal displacement, and by
substituting in (5) gives:

P0

ρ0c2 =
1
f
< un >

r0
σ0r0, (7)

where σ0 = SP
VT

is the specific surface area (SP is the total
empty porous, and VT is the total volume of sample), and
r0 is the mean grain radius.

In a solid grain, the relation:

∆(ui + xie) = 0 (8)

is a rigorous relationship, where ∆ is the Laplace operator,
ui is the displacement in grain, and e is the dilatation of the
grain material. By definition, the pressure is given by the
dilation times the bulk module, as:

P = e(λ +
2
3

µ). (9)

Equation (8) means, that the sum ui + xie is a harmonic
vector. As its mean value is zero in the grain center, we
can assume this harmonic function to be zero in the grain
material, and thus relate displacement, ui, and dilatation, e;
in other words, ui =−xie, and

< un >=−< e > r0. (10)

Equation (10) relates normal displacement in liquid and
dilatation in solid.

Substituting the relations (10) and (9) into equation (7),
we can write in explicit form the pressure discontinuity, P0

P ,
between solid and liquid:

P0

P
=

σ0r0

f
ρ0c2

λ + 2
3 µ

. (11)

Equation (11) shows that the pressure gradient in solid,
∇P, perfectly coincides with the fluid flow lines in the pore
structure, ∇P0, and it remains invariable in the productive
layer, if the structure of pore space (porosity and specific
surface) are constant in this layer.

Compressibility decreases abruptly at low gas contents,
and viscosity varies slowly. Therefore, gas saturation of
fluids is not necessarily favorable to oil production, but
reduces the pressure gradient which is not always canceled
by the respective fluid viscosity decrease.

According to (10), the problem of calculating fluid flow into a
borehole is reduced to the integration of Poisson’s equation
given by:

∆u̇i =
1
η

σ0r0

f
ρ0c2

λ + 2
3 µ

gradiP, (12)

where gradi = ∇i = ∂

∂xi
,(i = x,y,z), and η the fluid

viscosity. Boundary conditions for this equation (conditions

of viscous adhesion) require the velocities of particles be
zero over the pore surface. The problem of integration of
(12) and flow rate estimation requires calculating of stress
and, on the other hand, the knowledge of two parameters
of the pore space and fluid compressibility.

The methods of integration for equation (12) are
straightforward, even in the case of an arbitrarily complex
pore structure; permeability is unnecessary as it appears
in a complex way as a result of phase interaction and pore
structure. Considering a particular case of noninteracting
fractures, modeled by rectilinear segments with constant
crack opening, equation (12) can be easily integrated to
yield an equation for flow rate:

u̇i =
δ 2

12η

σ0r0

f
ρ0c2

λ + 2
3 µ

gradiP = KgradiP, (13)

where δ is the mean crack opening, and δ 2 represents
permeability for this particular pore structure. Therefore,
the pressure difference between the skeleton and the fluid
depends on the geometry of the pore space (mainly on
its specific surface), and on the hydrodynamic properties
(compressibility and viscosity) of the fluid. The problem of
pore pressure estimation cannot be solved separately from
the problem of general stress calculation. Equation (13)
plays the role of Darcy´s law for the specific model now in
focus.

Percolation and permeability

Sibiryakov (2002) described that the estimation of stress
and strain in oil-gas structure require the integration of the
equations of equilibrium of the form:

∂σik

∂xk
= ρg, (i, j,k = 1,2,3; or x,y,z), (14)

for every layer.

For elastic rock deformation, the equation of equilibrium
derived from equations (1), (2), and (3) under the condition
of Hooke’s law in closed form is given by:

(λ +µ)gradidiv~u+µ∆ui = ρgi, (15)

where gi,(i = x,y,z), gz = g, gx = gy = 0, and ∆ = ∇ ·∇ is the
Laplace operator (Landau, 1988). The Lame’s parameters
λ and µ are determined from P and S wave velocities. As to
boundary conditions, we can write the stress for the inside
of any layer an expression of the form:

σikn+k (Sm) = σikn−k (Sm), u+i (Sm) = u−i (Sm), (16)

where Sm stands for a surface numbered m, and n+,n−

points to outside or to the inside of the surface Sm.

On the free Earth’s surface the boundary conditions for the
stress is given by:

σikn+k (S0) = 0, (17)

where the summation over the repeated index is implicit.

Besides conditions (16) and (17), there are some
conditions on the lateral surfaces that bounds the oil-gas
structure. In common case these conditions depend on
the geological conditions, but often this conditions is not
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sufficiently enough, especially if the horizontal dimension
of the structure is larger than vertical dimension.

Sometimes, it is possible to use as boundary conditions
the normal field of stresses without the effect of structure.
And for this condition, the fluid pressure equals the normal
stress in solid matrix, but not the pressure in solid, because
the lateral stresses are not equal to normal stress. In order
to calculate a discontinuity of pressure between liquid and
solid, it is necessary to integrate the equation of equilibrium
in a small volume of the productive layer with boundary
conditions on pore space like:

σikn+k (S) = P∞(S), u+i (S) = u−i (S). (18)

In the above equation P∞ = constant is the pressure in the
fluid. On the outside boundaries of elementary volume
(edges of cube, for example) we need require the same
displacements like in the edges of elastic cube without pore
space. These conditions gives the constant value P∞, which
is in equilibrium state with respect to stresses in solid. No
doubt that this pressure depends on the structure of pore
space, but first of all on the specific surface of pore space.

The volume dissipative forces by viscosity

The tangential surface force due to viscosity is given by the
expression FSτ = σ0

∂uτ

∂n , while the tangential volume force
due to the same reason is given by:

FV τ = σ0η
∂uτ

∂n
, (19)

where σ0 is the specific surface, η is viscosity, u̇ is
particle velocity, and n and τ are the normal and tangent
directions of liquid-grain contact. For cracks sufficiently
long compared to their opening, it would be convenient to
use a simpler problem from the Navier-Stokes equation;
to be specific, the solution of the problem about flowing
between two infinite plates in the form (Landau, 1988):

∂ p
∂x

= η
∂ 2uτ

∂ z2 , (20)

In this equation p is pressure in liquid, and uτ = ux = ux(z)
in the particular case of Figure 4, where uy = uz = 0, and
it represents a layout of the physical process of the flow,
showing the sticking at the boundaries. The solution of

Figure 4: Cross section of flow between infinite two plates.
The length of dominant fracture is much larger than the
crack opening.

equation (20) takes the form:

∂ p
∂x

= P = constant, u̇x =
P

2η
(h2− z2). (21)

In the above equations, h is the crack opening. Hence, the
surface force due to viscosity is given by the formula:

η
∂ p
∂x

=−hP. (22)

The volume force acting in any point of the complex
structured continuum is given by:

σ0η
∂ p
∂x

=−σ0hP =−2σ0

h
η < ux > . (23)

In the above equation < ux > is the average particle velocity
between two planes. It means, that the Navier-Stokes
equation contains an additional term that describes the
volume dissipative force against the fluid velocity, namely:

< Fτ >=−k2u̇r, (k2 = 2
σ0

h
) =

σ2
0
f
), (24)

where f is porosity.

Stress in solid near borehole

For the solid near borehole there are equations of
equilibrium in cylindrical coordinates in the form:

∂σzz

∂ z
+

∂τrz

∂ z
+

τrz

r
= ρg (25)

∂σrr

∂ r
+

σrr−σϕϕ

r
+

∂τrz

∂ z
= 0. (26)

The stress pattern corresponding to the cylindrical
coordinates are shown in Figure 5.

Figure 5: Stress nomenclature in cylindrical coordinates,
and the representation of the borehole with liquid, and solid
around it.

The above equations have very simple solutions, because
for very large layer thickness in comparison to the radius
of the borehole, the tangent stress τrz is equal to zero in
all volume of rocks near the borehole. There is a known
solution for the radial deformation (e) of an elastic medium
of density ρ with a cylindrical cavity of radius r0, and
saturated by a liquid of density ρ0 given by:

eϕϕ (r0) =
ur(r0)

r0
= ρgz(

σ

1−σ
− ρ0

ρ
). (27)

In the above equation σ is the Poisson ratio, ur is the radial
displacement, and g the gravity. Besides that, considering
that there is planar incompressibility (no change in density
with respect to the z coordinate, compression along z,
dilation along x,y, dilation along z, compression along x,y)
in solid, we write that:

err + eϕϕ = 0. (28)
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The respective solutions of equations (25) and (26) for the
elastic stresses near borehole is given by the formulas
(Sibiryakov, 1993):

σrr = (1−2γ
2)P0− (

r0

r
)2P0η , (29)

σϕϕ = (1−2γ
2)P0 +(

r0

r
)2P0η . (30)

In equations (29) and (30), γ = VS
VP

, P0 is the weight of
overburden rocks, and η = 1−2γ2− ρ0

ρ
.

Equation of equilibrium and velocity of fluid

The equation of equilibrium with dissipative force around
the borehole takes a form:

∆u̇r− k2u̇r−
1
η

∂ p
∂ r

= 0, (31)

where u̇r is the particle fluid velocity in the borehole. The
normalized components are; the first term (∆u̇r) the volume
force, the second term (−k2u̇r) the volume dissipative
force, and the third term (− 1

η

∂ p
∂ r ) the volume force due to

pressure.

To find a solution for the above equation, a suggestion is
that there is planar incompressibility for liquid as well as for
solid, and that there is a linear relationship with respect to
the vertical z coordinate, like in (25). It means that there is
a term ∂ 2u̇

∂ 2z2 = 0 in Laplace operator, such that this operator
simplifies to the form:

∆u̇r =
∂ 2u̇r

∂ r2 +
1
r

∂ u̇r

∂ r
. (32)

With the assumption of planar (not in volume)
incompressibility, there is additional conditions for
equation (32) in the form:

∂ u̇r

∂ r
+

u̇r

r
= 0, u̇r =

C(r)
r2 . (33)

where C(z) is an arbitrary function. Besides that, we can
write equation (32) in the form:

∂ 2u̇r

∂ r2 +
1
r

∂ u̇r

∂ r
=

∂

∂ r
(

∂ u̇r

∂ r
+

u̇r

r
)+

u̇r

r2 =
u̇r

r2 . (34)

Substituting (34) into equation (32) gives a simpler
expression for equation (31) in the form:

∂ p(r)
∂ r

= η(
C(z)

r3 − k2u̇r). (35)

Integrating the above equation with respect to r, with
inferior limit r and superior R, follows that:

p(r) = P∞−η(
C(z)
2r2 − k2C(z)ln

R
r
). (36)

To take into account that on the borehole surface r = r0,
p→ P0, R >> r0 and p(R) = P∞, we obtain:

p(r0) = P0 = P∞−η(
u̇0

2r0
+ k2u̇0r0ln

R
r0
). (37)

In the above equation R is the horizontal range of the
productive layer, P∞ is the liquid pressure outside the

borehole (very far from it), and P0 is the borehole liquid
pressure. From formula (37), we obtain the velocity
of fluid, [u̇0(r0)], into borehole, also with a convenient
approximation:

u̇0(r0) =
P∞−P0

η

2r0

1+2k2r2
0 ln R

r0

≈ P∞−P0

η

1
r0 ln R

r0

f
σ 2

0
= K

f
σ0

. (38)

We simplified to the last form to emphasize the
dependence of f , σ0, and its ratio f

σ0
, with K representing

constant term. Figure 6 shows the plot of u̇0(r0) versus
specific surface area, σ0, and porosity, f , where the
quantity f

σ0
plays the role of permeability. This figure

shows the rapid decay of u̇0(r0) versus f and σ0. Due to
large specific surface area parameter, there is almost zero
velocity flow inspite of sufficient porosity.

Also, for positive pressure contrast, +|P∞ − P0|, the flow
is from layer reservatory to borehole, and when negative,
−|P∞−P0|, from borehole to layer.

Figure 6: Plot of the formula of velocity flow (38) as a
function of porosity, f , and specific surface area, σ0.

It is interesting to mention that there is no necessity to
use Darcy´s law. Besides that, formula (38) does not
contain the permeability coefficient, k. However, there is
empiric relation between specific surface, σ0, porosity, f ,
and permeability, k, namely (Sibiryakov and Prilous, 2007):

k =
D2

p f 3

150(1− f )2 , Dp =
6

σ0
=

6
SE
VT

, (39)

where SE is the total area of the porous space, and VT is
the total volume of the sample, and σ0 = SE

VT
. The equation

(39) can be rewritten as:

σ0 =

√
6

5
f

3
2

(1− f )
1√
k
. (40)

The percolation process depends on porosity and specific
surface only.

Pressure in liquid far from borehole

The value P∞ contained in equation (38) can be determined
by solving of a problem about discontinuity between
pressures in solid and in liquid. The usual stress-strain
condition is given by the integration of the equation (14)
of equilibrium, rewritten below:

∂σik

∂xk
= ρgi. (41)
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For simply stress conditions, when the vertical stresses are
equal to the weight of rocks, but the horizontal stresses
contain a factor of the type σ

1−σ
, (σ is the Poisson

coefficient), it is possible to formulate the following problem
related to Figure 7: the elementary cube undergoes by

Figure 7: A cube volume where the liquid has pressure P∞,
and the solid P.

vertical displacement u0, while horizontal displacements
are equal to zero. Inside the cube there is a liquid with
constant pressure P∞. On the boundary solid-liquid the
average normal displacement is given by the formula:

< un >=
P∞

ρ0c2
0

f
σ0

. (42)

Under the condition of fluid incompressibility, the average
tangent displacement on the boundary solid-liquid, it can
be shown that:

<
∂uS

∂n
>=−< un >

πl0
. (43)

with l0 as a dominant distance between porous. This result
comes from differential geometry, and the quantities < un >
and < <un>

πl0 > have opposite sign due to physical counter
action at the boundary solid-liquid.

The relation between σ0, l0 and f is described by
Sibiryakov and Prilous (2007), and it is given by:

σ0l0 = 4(1− f ) (44)

The simplification of boundary conditions as (42) and
(43) gives the possibility to determine all stresses and
displacements as a function of unknown constant P∞. On
the vertical sides of the cube there are displacements equal
to constant value, but on the other side it is equal to zero.

Conclusions

Comparison of the maps of intensity of tangential stresses
J(x,y,z) and of inclinations φ(x,y,z) of stress-produced
fractures (see Figures 2 and 3) leads to the following
conclusions: (1) faults detected from 3D seismic data
correspond to local anomalies of tangential stresses; (2)
the observed mismatch can be related to the difference
between the present-day stress and the past stress along
the faults; (3) different OWC depths in boreholes with
numbers 124, 136, 139 can be caused by their position
in different fluid-stress zones.

Porosity and specific surface area give a possibility to use
alternative methods for measuring permeability.

The solution shows that the main factor of oil production is
the specific surface area of porous and crack media. The

solution does not contain the permeability; instead, there
is the inverse square of specific surface area that plays the
role of permeability.

The hydrofracture effect is due to a very small specific
surface for several large fractures, in comparison to a lot
of small fractures.
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